Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20244437

ABSTRACT

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Subject(s)
Blood Platelets , COVID-19 , Humans , SARS-CoV-2 , Breakthrough Infections , Multiomics , Antibodies, Neutralizing , Antibodies, Viral
2.
Cell Death Dis ; 14(4): 276, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2298782

ABSTRACT

Omicron variants of SARS-CoV-2 have spread rapidly worldwide; however, most infected patients have mild or no symptoms. This study aimed to understand the host response to Omicron infections by performing metabolomic profiling of plasma. We observed that Omicron infections triggered an inflammatory response and innate immune, and adaptive immunity was suppressed, including reduced T-cell response and immunoglobulin antibody production. Similar to the original SARS-CoV-2 strain circulating in 2019, the host developed an anti-inflammatory response and accelerated energy metabolism in response to Omicron infection. However, differential regulation of macrophage polarization and reduced neutrophil function has been observed in Omicron infections. Interferon-induced antiviral immunity was not as strong in Omicron infections as in the original SARS-CoV-2 infections. The host response to Omicron infections increased antioxidant capacity and liver detoxification more than in the original strain. Hence, these findings suggest that Omicron infections cause weaker inflammatory alterations and immune responses than the original SARS-CoV-2 strain.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Adaptive Immunity , Antibodies
3.
BMJ Open ; 12(12): e066359, 2022 12 15.
Article in English | MEDLINE | ID: covidwho-2161862

ABSTRACT

OBJECTIVE: To report how the Chinese mainland battled its first omicron wave, which happened in Tianjin, a metropolis with 14 million residents. We also sought to better understand how clinical features affected the timing of viral clearance. DESIGN: A retrospective study of the omicron wave in Tianjin between 8 January 2022 and 3 March 2022. SETTING: Except for the first cases on 8 January, all the omicron cases were identified through PCR mass testing in the residential communities. Residential quarantine and serial PCR mass testing were dynamically adjusted according to the trends of new cases. PARTICIPANTS: All the 417 consecutive PCR-positive cases identified through mass screening of the entire city's 14 million residents. 45.3% of the cases were male, and the median age was 37 (range 0.3-90). 389 (93%) cases had complete data for analysing the correlation between clinical features and the timing of viral clearance. MAIN OUTCOME AND MEASURE: Time to viral clearance. RESULTS: Tianjin initiated the 'dynamic zero-COVID' policy very early, that is, when daily new case number was ≈0.4 cases per 1 000 000 residents. Daily new cases dropped to <5 after 3 February, and the number of affected residential subdivisions dropped to ≤2 after 13 February. 64% (267/417) of the cases had no or mild symptoms. The median interval from hospital admission to viral clearance was 10 days (range 3-28). An exploratory analysis identified a feature cluster associated with earlier viral clearance, with HRs of 3.56 (95% CI 1.66 to 7.63) and 3.15 (95% CI 1.68 to 5.91) in the training and validation sets, respectively. CONCLUSIONS: The 'dynamic zero-COVID' policy can suppress an omicron wave within a month. It might be possible to predict in advance which cases will require shorter periods of isolation based on their clinical features.


Subject(s)
COVID-19 , Humans , Male , Adult , Female , Retrospective Studies , COVID-19/epidemiology , Policy , China/epidemiology , Asian People
4.
Can J Infect Dis Med Microbiol ; 2021: 5944518, 2021.
Article in English | MEDLINE | ID: covidwho-1507108

ABSTRACT

OBJECTIVE: To explore the characteristics of invasive pulmonary fungal disease and the spectrum of pathogens causing invasive pulmonary fungal disease diagnosed by pathological examination using fungal stains. METHODS: Patients with an invasive pulmonary fungal disease diagnosed by histopathological analysis through the use of fungal stains (including Grocott's methenamine silver and periodic acid-Schiff stains) were included in this study. The clinical records, radiological reports, pathology, and fungal culture results were reviewed. RESULTS: Forty-eight invasive pulmonary fungal disease patients diagnosed by histopathological analysis in the Tianjin Haihe Hospital (including 8 cases obtained by pulmonary resection, 35 cases by fiberoptic bronchoscopic biopsy, and 5 cases by percutaneous lung biopsy) were included. There were 24 male and 24 female patients, aged 21-80 years (53 ± 13 years). There were 37 cases of pulmonary aspergillosis, 4 cases of pulmonary cryptococcosis, 2 cases of pulmonary mucormycosis, and 5 in which pathogens were not determined due to limited tissue availability. Among 48 cases, 32 specimens were submitted to fungal culture. No fungus was detected in culture, although 26 cases of fungus infections were diagnosed by histopathological analysis. Only 3 cases were consistent between histopathological and culture results. In 3 cases, the pathogen was identified as Aspergillus spp. by the histopathological analysis, while the contrasting fungal culture results identified Candida albicans. CONCLUSION: Candida albicans pneumonia was rare, while aspergillosis was common in invasive pulmonary fungal disease diagnosed by histopathological analysis. The majority of patients with an invasive pulmonary fungal disease were culture-negative. Although culture can clarify the fungal pathogen species, it has low sensitivity. Pathological examination with fungal stains has its advantages in diagnosing fungal disease; therefore, more attention should be paid to the role of pathological examination in the diagnosis of fungal disease.

SELECTION OF CITATIONS
SEARCH DETAIL